An optimized finite difference Crank-Nicolson iterative scheme for the 2D Sobolev equation
نویسندگان
چکیده
منابع مشابه
Crank-Nicolson Difference Scheme for the Generalized Rosenau-Burgers Equation
In this paper, numerical solution for the generalized Rosenau-Burgers equation is considered and Crank-Nicolson finite difference scheme is proposed. Existence of the solutions for the difference scheme has been shown. Stability, convergence and priori error estimate of the scheme are proved. Numerical results demonstrate that the scheme is efficient and reliable. Keywords—Generalized Rosenau-B...
متن کاملA Closed-Form Solution for Two-Dimensional Diffusion Equation Using Crank-Nicolson Finite Difference Method
In this paper a finite difference method for solving 2-dimensional diffusion equation is presented. The method employs Crank-Nicolson scheme to improve finite difference formulation and its convergence and stability. The obtained solution will be a recursive formula in each step of which a system of linear equations should be solved. Given the specific form of obtained matrices, rather than sol...
متن کاملA Note on Crank-Nicolson Scheme for Burgers’ Equation
In this work we generate the numerical solutions of the Burgers’ equation by applying the Crank-Nicolson method directly to the Burgers’ equation, i.e., we do not use Hopf-Cole transformation to reduce Burgers’ equation into the linear heat equation. Absolute error of the present method is compared to the absolute error of the two existing methods for two test problems. The method is also analy...
متن کاملCrank-nicolson Finite Difference Method for Solving Time-fractional Diffusion Equation
In this paper, we develop the Crank-Nicolson finite difference method (C-N-FDM) to solve the linear time-fractional diffusion equation, formulated with Caputo’s fractional derivative. Special attention is given to study the stability of the proposed method which is introduced by means of a recently proposed procedure akin to the standard Von-Neumann stable analysis. Some numerical examples are ...
متن کاملAn Adaptive Algorithm for the Time Dependent Transport Equation with Anisotropic Finite Elements and the Crank-Nicolson Scheme
The time dependent transport equation is solved with stabilized continuous, piecewise linear finite elements and the Crank-Nicolson scheme [1]. Finite elements with large aspect ratio are advocated in order to account for boundary layers. The error due to space discretization has already been studied in [2]. Here, the error due to the use of the Crank-Nicolson scheme is taken into account. Anis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2017
ISSN: 1687-1847
DOI: 10.1186/s13662-017-1253-8